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1 URL

GitHub Page: https://allenchou.github.io/CMU-15618-Final-Project/.

2 Schedule

The up-to-date schedule in provided in Table 1.
Week | Due Task Assigned to | Status
1 11.3 | Project Proposal Both Completed
1 11.3 Implement graph data structure and graph data generator Both Completed
2 11.10 | Implement disjoint set data structure Wenting Ye | Completed
2 11.10 | Implement sequential Kruskal’s algorithm Wenting Ye | Completed
2 11.17 | Implement parallel Kruskal’s algorithm with parallel sorting Xuren Zhou | Completed
3 11.17 | Implement sequential Kruskal’s algorithm with Filter-Kruskal Xuren Zhou | Completed
3 11.17 | Project checkpoint report Xuren Zhou | Completed
4 11.21 | Implement parallel Kruskal’s algorithm with Filter-Kruskal Xuren Zhou | In progress
4 11.24 | Initial benchmark and profile parallel Kruskals’ algorithms Xuren Zhou | In progress
4 11.24 | Implement correctness checker using Boost Wenting Ye
4 11.28 | Implement sequential Boruvka’s algorithm Wenting Ye
5 11.28 | Implement sequential Boruvka’s algorithm with edge contraction | Xuren Zhou
5 12.1 | Implement parallel Bortuvka’s algorithm Wenting Ye
6 12.1 Initial benchmark and profile parallel Boruvka’s algorithm Wenting Ye
6 12.8 | Large benchmark for both algorithms on GHC/CloudLab Xuren Zhou
6 12.8 Poster and final report Both

Table 1: Project schedule.

3 Summary of Completed Work

We have implemented graph data structure, random graph generator, sequential Kruskal’s algorithm, Kruskal’s
algorithm with parallel sorting and sequential Filter-Kruskal’s algorithm. Some initial benchmark experiments are
in progress and we will show some preliminary results in the later section.

4 Goals and Deliverables

4.1 Goals
4.1.1 Plan to achieve

e Implement two sequential algorithms, Kruskal’s algorithm and Boruvka’s algorithms, as the baseline of our
performance benchmark.
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e Parallelize these two sequential algorithms in shared-memory model using OpenMP:

— Krushal’s algorithm with parallel sorting and Filter-Kruskal [1],

— Boruvka’s algorithm with edge contraction [2].

e Benchmark the speedup performance of our parallel implementations under different types and sizes of input
graphs. We plan to consider two kinds of graphs: dense graphs and sparse graphs.

e Explore the speedup performance of different parallel components, such as the parallel sorting in Krushal’s
algorithm and the parallel finding adjacent edge with the smallest weight of each vertex in Boruvka’s algorithm.

4.1.2 Hope to achieve
e Explore the speedup performance on input graphs with power-law distribution.
e Implement a faster shared-memory MST algorithm proposed by Bader et al. [3].

e Explore the possibility to implement parallel Krushal’s and Boruvka’s algorithms in message-passing model
using MPI.

4.2 Progress
4.2.1 Original goals

For the algorithm part, We have implemented most of Kruskal’s algorithm: including the sequential baseline, Kruskal
with parallel sorting and sequential Filter-Kruskal. For sequential baseline, we use C++ STL sorting algorithm while
in our parallel sorting, we implement a recursive quicksort and use OpenMP task to parallelize it. Although our
gicksort implementation is slower than C++ STL sorting, the parallel version is faster than C++ STL sorting.

The parallel version of Filter-Kurskal is still under exploration. The basic idea of Filter-Kruskal is to construct
minimal spanning forest for small edges first, and then filter out large edges whose endpoints within the same tree and
then run Filter-Kruskal on the remaining large edges. It is a recursive algorithm and there is a strong dependency
between each recursive layer. We try to use OpenMP task dependency to generate tasks but the dependency makes
the running time worse. Instead of parallelizing the recursive tasks, we decided to focus on the tasks within each
recursive layer: namely the partition and filter. After the checkpoint, we are going to implement our partition and
filter via prefix-sum. So far, we just use C++ STL, which is a single thread algorithm.

For the graph generator, we implement a random graph generator: For each pair of vertices u and v, there is p
probability such that e = (u,v) € G. Once e € G, the weight of e is uniformly distributed on a given range. Because
the probability is a fixed value, our graph generator outputs a dense graph. During our initial benchmark, we notice
that Kruskal’s algorithm spends most of its running time on sorting, therefore it is expected to get good speedup
once we parallelize the sorting. However, when we run the same data on sequential Filter-Kruskal, we get better
running time, even better than Kruskal with parallel sorting. This inspires us to explore the performance of our
implementation on different graph type. To accelerate the saving and loading data, we use binary file to store the
data.

4.2.2 Extra goals and new goals

For extra goals, we consider to add graphs with power-law distribution as our testing data to our final deliverables.
We want to focus on our parallel implementation on shared-memory model so we decided not to consider to explore
these two algorithms using MPI. We will spend more time on the benchmark experiment design. If we have time,
we will consider to implement Bader’s algorithm.

There are things we want to add to our new goals: correctness and high-level parallel modules. We consider
to add a correctness checker implemented via Boost, which contains a MST implementation and can be used as a
new baseline to test our speedup performance. Meanwhile, we notice that there are some native parallel module
in some specific C++ compiler, such as libstdc++ parallel mode in GCC and TBB. libstdc++ parallel mode uses
shared-memory model to parallel some STL algorithms such as sorting, partition, etc. So we think it is also a good
point to explore.



To summarize, we add two new basic goals, graphs with power-law distribution and Boost checker, and one extra
goal, exploring 1ibstdc++ parallel mode.

5 Poster Deliverables

We will deliver the speedup graphs of our parallel implementations under different numbers of threads and different
types and sizes of input graphs. We will also deliver speedup graphs, or tables, of different parallel components.
We think a reasonable speedup with respect to the number of processors will demonstrate that demonstrate we did
a good job. If we cannot get a good speedup, we will try to profile our implementations to show that the parallel
overhead is inevitable under our testing platform and provides potential specs of the testing platform to improve the
speedup of our implementations.

6 Preliminary results

We conduct an initial benchmark with graph of node size 5000, 10000 and 20000 and edge probability 0.05, 0.1 and
0.2. We use random-N-p to represent the case of a random graph of node size N and edge probability p. We use STL
sorting implementation of sequential Kruskal’s algorithm as our baseline. The running platform is on my personal
MacBook Pro with 2.6 GHz 6-Core Intel Core i7 CPU. The result is shown in Table 2, in which the sequential sort
represents our OpenMP implementation without OpenMP #pragma.

case baseline sequential sort parallel sort sequential filter
random-5000-0.05 1 0.6732376416 1.657943461  2.657509953
random-10000-0.05 | 1 0.6603400285 1.690410944  2.682852532
random-20000-0.05 | 1 0.5990178821 1.592128318  4.339100392
random-5000-0.1 1 0.693282639 1.535450117  3.063387064
random-10000-0.1 1 0.5830809685 1.37825495  4.677607176
random-20000-0.1 1 0.5829203993 1.85125072  4.067878587
random-5000-0.2 1 0.6493750125 1.847814554  3.441612889
random-10000-0.2 1 0.5766389356 1.425928101  3.410266252
random-20000-0.2 1 0.5862568891 1.904486512  4.300331156

Table 2: Preliminary results of speedup performance.

This result is only used to show that our OpenMP indeed has some speedup. Meanwhile, it reflects some potential
issues in our implementation: we expect the speedup can be about x6 because we have 6 cores in our CPU. However
the result shows that it is about x1.5 speedup. Even if we consider the speedup with respect to sequential sort,
the speedup is still only about x3. Therefore, further analysis and optimization is required to get better performance.

We breakdown the running time of baseline and sequential sort: Sorting takes about 84% running time in baseline
and 91% running time in our sequential sort.

One interesting observation is that sequential filter is quite efficient, which indicates that there is a lot of useless
sorting work in original Kruskal’s algorithm.

7 Issues

Issues that concern us the most have been discussed in previous sections. Here we summarize them into a list:

e How to optimize the parallel performance to fully utilize the CPU parallel resource. So far, our initial im-
plementation can only achieve about x3 w.r.t. our sequential sort implementation. Further optimization is
required after we finished basic requirement.

e Parallel partition: it is not trivial to parallelize partition algorithm. The main reason is that the position of the
element is not independent with others. One possible way is to use prefix-sum. It is natural to implement prefix-
sum using SIMD model, such as CUDA or SSE CPU instruction. The performance of OpenMP implementation
is unknown to us, so we need to spend some time to explore it.



e Different algorithms have different performance on different graph type. It is not enough to only consider
random graph with uniform distribution. How to design the benchmark is also a potential issue in our project
deliverables. So far, we consider to add sparse graph (constant vertex degree upper bound) and random graph
with power-law distribution.

e There is no correctness checker in our current implementation. There is a MST implementation in Boost, which
can be used as checker in our project. However, we are not sure whether it is easy for us to use it.

e We have noticed that C++ STL algorithm library is quite efficient in a single thread. We are worried about
that the bad speedup performance is due to some unknown optimization in STL. One possible solution is to
compute the speedup without STL. Another way is to take advantage of 1ibstdc++ parallel mode. We have
no experience using the later one so we put it in our extra goals.
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