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2 Summary

In this project, We parallelize the Kruskal’s algorithms for minimum spanning tree. We first profile the program and

notice that the sorting contributes the most time consuming. Consequently, we investigate different parallel sorting

algorithms to speed up the algorithm, including enumeration sort, parallel quicksort, and sample sort. Parallel

sample sort achieves the best speed up (4.35x) compared to our sequential baseline implementation with 8 threads

on GHC machine.

3 Background

In a connected, edge-weighted undirected graph, a minimum spanning tree (MST) is a subset of edges that connects

all nodes with the smallest total weights (Figure 1). It has been well-studied for nearly a century and can be solved in

polynomial time with different greedy algorithms. For example, Prim’s algorithm [1] uses the cut-property of MST,

and constructs the MST by adding the smallest edge that connects the current nodes set and the remaining nodes

set. However, Prim’s algorithm is hard to parallelize in nature because each step depends on the current sub-graph

built on previous steps.

In this project, we are going to focus on Kruskal’s algorithm [2]. Kruskal’s algorithm utilizes the cycles-property

and build the MST by adding the smallest edge that does not create a cycle. These two steps in Kruskal’s algorithm:

sorting and merging. In sorting step, we sort all edges by their weight in ascending order. In merging step, we
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Figure 1: Minimum spanning tree.

iteratively add the smallest edge to our output graph if it does not create a cycle in it. The algorithm is illustrated

in Figure 2.

Figure 2: Kruskal’s algorithm.

3.1 Data structures

There are two key data structures used in our project: undirected graph and disjoint-set [3]. We use the undirected

graph to represent the input and output graph information and use disjoint-set to justify whether it is valid to add

a candidate edge to our final output.

3.1.1 Undirected graph

Kruskal’s algorithm is an edge-centric algorithm. Therefore, we represent the undirected graph as a set of undirected

edges. More specifically, Graph class has two member variables:

• int num_vertices: The number of vertices.

• std::vector<Edge> edges: An array of all undirected edges. Each Edge has three variables: two integers,

from and to, represent its vertices indices and one float, weight, represents its weight. Because our graph is

undirected, we require from < to and there is no duplicated edge in edges.

There is no specific key operation on Graph because a single edge has already contained all the necessary informa-

tion for Kruskal’s algorithm. Kruskal’s algorithm requires to sort all edges based on their weights. For our serial

implementation, we use C++ STL sorting with lambda formula to implement this step.
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3.1.2 Disjoint-set

Kruskal’s algorithm adds a candidate edge e = (u, v) to the current output set T if there is no cycle after adding e,

namely u and v are not connected in current T . Disjoint-set is a very efficient data structure to justify whether u and

v are connected and update their connectivity after adding e in O(α(n)). We implement this data structure from

scratch with two main optimizations, path compression and union by rank, which will be explained in key operations.

Disjoint-set is usually represented as a forest. Two node u and v is contained in the same set if and only if they

are located in the same tree. Here the tree is an abstract data structure of the Disjoint-set to represent a set, which

is not the tree we need to find in our MST algorithm. Because we use index to represent the vertex and all vertices

will be connected in the output MST, we can still use index to represent them in our disjoint-set. More specifically,

DiskjointSet class has three member variables:

• int num_nodes: The number of vertices.

• std::vector<int> ranks: An rank array. ranks[i] represents the rank of node i.

• std::vector<int> parents: An parent array. parents[i] represents the parent of node i. If node i is a root,

its parent is itself.

There are three key operations on Disjoint-set:

• find(u): return the root r of the tree where u is located at. This function traverses the path from u to r to

find the root r. To accelerate the later access of u, the parents of all nodes on the path are updated to r. This

side effect (optimization) is called as path compression.

• belongSameSet(u, v): return true if u and v are located in the same tree. This function is implemented via

find.

• unionSet(u, v): This function merges the trees of u and v as one tree if u and v are located at different

trees. The parent of the root with smaller rank is updated to the root with larger rank and the larger rank is

incremented by 1. This optimization is called as union by rank. The rank is similar to the depth but it is not

because it is not updated during path compression.

We use this data structure to implement the merging step of our serial Kruskal’s algorithm and construct the

final minimum spanning tree.

3.2 Inputs and outputs

The input and output are both undirected graphs. To reduce the time of loading the input and saving the output,

we dump the unidrected graph into binary form. The first 8 bytes is the number of vertices, followed by 8 bytes

representing the number of edges and then followed by the edge array:
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| #vertices (8 bytes) | #edges (8 bytes) | edge[0] (16 bytes) | edge[1] (16 bytes) | ...

We implement the loading and the saving as two methods in Graph: loadGraph and saveGraph.

3.3 Workload breakdown

Kruskal’s algorithm can be broken down into sorting step and merging step.

The merging step needs the candidate edges added from the smaller weight to larger weight, therefore it needs

to wait for the finishing of sorting step. Meanwhile, the validity of a candidate edge depends on the current output

forest, which means that it depends on the validity of all previous candidate edges. Therefore, it is hard to parallelize

the merging step.

Meanwhile, parallel sorting has been studied for a long time. It is a challenging problem but there is indeed

a large potential for parallelism. The most directly is to parallelize QuickSort. QuickSort is an in-place sorting

algorithm. It first picks up a pivot and use it to partition elements into two parts and recursively apply the sorting

algorithm to these two parts. The partition makes sure the elements will be finally located at its part, which is the

data locality. The recursive sorting implies a SIMD execution. Therefore, we can use shared-memory parallelism to

speedup the sorting step.

Theoretically, the edge sorting takesO(|E| log |E|) operations and building the MST by merging takesO(|E|α(|V |))

operations, where α is the inverse Ackermann function [4]. In practice, α(|V |) grows extremely slow and hence the

overall complexity is O(|E| log |E|). In the later result section, you will see that sorting step is much more compu-

tational dense than merge step and parallel sorting can provide quite good speedup for Kruskal’s algorithm.

4 Approach

4.1 Kruskal’s algorithm

Recap our serial solution of minimum spanning tree: Kruskal’s algorithm involves two main parts.

1. Sorting: sort all edges in the graph by its weight;

2. Merging: add the smallest edge that does not create a cycle to the answer sub-graph until there are v−1 edges

in the sub-graph.

The edge sorting takes O(|E| log |E|) operations and building the MST takes O(|E|α(|V |)) operations, where α

is the inverse Ackermann function. Since in merging part, each step depends on the sub-graph built previously, it’s

highly dependent and hard to parallelize. Besides, sorting has higher time complexity than the merging part. Hence,

in this project, we will focus on parallel sorting algorithms.
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4.2 Parallel sorting algorithms

In this section, we will assume that we have p processors.

4.2.1 Enumeration Sort

Enumeration sort is straight-forward and can be parallelized easily. The procedure is as follows:

1. Calculate the final index in sorted array within its partition by counting the number of elements that is smaller

than it;

2. Re-map the array to get the sorted array.

The operation is perfectly perallelized, however, it requires O(n2) time complexity. In our experiment, even for

a graph with 5,000 nodes, we find out it cannot obtain the answer in a reasonable amount of time. Hence, we decide

to move forward with other approaches.

4.2.2 Parallel quicksort

The classic quicksort algorithm is defined as the following recursive procedure:

1. Randomly select an element x as pivot;

2. Put x in its correct position by placing all smaller elements before it and all bigger elements after it;

3. Sort the two partitions using quicksort separately.

The quicksort is a recursive in-place algorithm, which indicates a SIMD execution and data locality. To parallelize

the recursive calls of our quicksort, we adopt OpenMP task parallelism.

4.2.3 Parallel sample sort

The sample sort is a generalization of quicksort. Quicksort divides the array by 2 parts, however, the sample sort

divides the array into p partitions, and then each partition can be sorted separately [5,6]. The procedure is described

as followed:

1. Select p pivots randomly from the original array;

2. Partition the array by p pivots selected before;

3. Sort each partition.

The run-time of the algorithm depends on the largest partition, hence it’s ideal to create balanced p partitions.

A technique called oversampling is used. In order to get p pivots, we first randomly select rp pivots and sort them.
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Then, r-th, 2 ·r-th, . . . , and p ·r-th pivots are used to partition the data. Here r is the oversampling ratio, and larger

r yields a more balanced distribution. We found this technique improves the balances of partititon significantly.

The parallel sample sort is described as below:

1. Select p pivots randomly from the original array by oversampling (O(rp·log(rp))). This is done by one processor;

2. Each processor counts the size of each bucket in its partition (O(n/p · log p));

3. Generate the start index for each bucket and partition (O(p2)). This is done by one processor;

4. Each processor maps its elements to its bucket (O(n/p · log p));

5. Each processor sorts its partitions in the new bucket (O(n/p · log(n/p))).

4.3 Implementation details

We target a single shared-memory machine with multiple cores. C++ is used to implement the algorithm and OpenMP

to parallelize our workload. In our sequential baseline algorithm, we use std::sort() and union find with path

compression and union by rank.

5 Dataset

The computational complexity of Kruskal’s algorithm is in term of |E| instead of |V |. Therefore we fix the number

of vertices to 40000 in our evaluation. We tried to use a larger number but limited quota of AFS does not allow us

to do that.

The minimal spanning tree of an undirected graph is decided by the order of edge weights and the graph topology.

To generate a random edge permutation, we uniformly sampling the weight within a fixed range. As we mentioned

before, the weight does not matter but the order of weights matters. In our evaluation, we fix the weight range

between 1.0 and 10.0.

We explore three kinds of graphs to evaluate the performance of our parallel MST algorithms on different graph

topologies:

• Random graph: For any two distinguished vertices u and v, edge (u, v) is in the graph with probability

p ∈ {0.01, 0.05, 0.1}.

• Sparse graph: For any vertex u, d ∈ {10, 50, 100} distinguished vertices v are connected to u. After removing

duplicated edges, the degree of each vertex is bounded between d and 2d.

• Power-law graph: The vertex degree d satisfies the power-law distribution p(d) ∼ d−r, r ∈ {1.5, 2.5, 3.5}.

Each vertex u is connected with d distinguished vertices v and duplicated edges are removed.
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6 Results

6.1 Correctness

We first verity the correctness of our program by comparing with the kruskal_minimum_spanning_tree() provided

in Boost [7]. We test 5 different graphs with 20,000 nodes generated under “random” setting (edge probability =

0.1) and shows that our program produces the same output as the reference boost library. It proves that our code

is correct.

6.2 Breakdown of time consumption

In this experiment, we generate random graphs of different nodes number with edge probability 0.1.
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Figure 3: Breakdown of time consumption of our sequential Kruskal’s algorithm

We profile our sequential Kruskal’s algorithm. With insufficient data, sorting and merging takes the roughly same

amount of time. But in the cases where we have a large amount of data, sorting dominates the overhead and takes

90% of run-time.

6.3 Sorting algorithm speedup

In this section, we want to investigate the speedup for each parallel sorting algorithm. To this end, we generate a

graph with 40,000 nodes under a “random” setting with edge probability 0.1. The baseline run with one thread.

As shown in Figure 4, we can see that sample sort achieves better speedup compared to quicksort. We observe

that the slope decrease when the number of threads is larger than 8, which is caused by hyper-threading. Speedup

curve for quick sort is less linear. We hypothesize the reason is that it’s parallelized based on dynamic scheduling
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(a) Quick sort speedup
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Figure 4: Sorting algorithm speedup

and each task has different workload. Besides, it takes more time to generate enough task to utilize all processors as

the number of threads increases. Quicksort also limited by the larger dependency between different tasks. Sample

sort has better performance over all cases.

6.4 Kruskal’s algorithm speedup

Then we investigate the speedup for Kruskal’s algorithm by parallelizing the sorting. To this end, we first evaluate

the algorithm on a graph with 40,000 nodes generated under a “random” setting with edge probability 0.1. The

speedup curve is shown as Figure 5.
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Figure 5: Speedup compared with sequential baseline

Firstly, we notice that although our sample sort achieves more than 8x speedup in sorting, it only achieves
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around 4.3x speedup in the end. The reason is that sorting only occupies 90% of the time, and such a degradation is

caused by Amdahl’s law. Under the circumstance with single thread, both algorithms performs worse than baseline

because baseline uses STL sorting with sophisticated optimization. Parallel sample sort consistently provide better

performance over parallel quicksort.

Additionally, we also evaluate the performance of the algorithm with different graphs, and the results are shown

in Figure 6.

(a) Random graph (b) Sparse graph (c) Power law graph

Figure 6: Speedup achieved on different graphs

As shown in Figure 6(a) and Figure 6(b), the achieved speedup increases when the number of edges increases. It

meets our expectations since sorting algorithm will take relatively more than merging with more edges. When the

number of edges is small, due to the Amdahl’s law, the speedup stops increasing quickly in Figure 6(c).

7 Work Distribution

Wenting Ye implemented the sequential Kruskal’s algorithm, enumeration sort, parallel sampling sort, checker pro-

gram using Boost. Xuren Zhou implemented the parallel quick sort, graph generator, proposal, and website. The

final report and poster are finished by both. We contribute 50%-50% to this project.
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